
Using AWT controls, Layout Managers, and Menus

• Controls are components that allow a user to
interact with your application eg push button.

• Layout manager automatically positions
components within a container. Thus, the
appearance of a window is determined by a
combination of the controls that it contains and
the layout manager used to position them.

• Menu bar : Each entry in a menu bar activates a
drop-down menu of options from which the user
can choose. This constitutes the main menu of an
application. As a general rule, a menu bar is
positioned at the top of a window.

AWT Control Fundamentals
The AWT supports the following types of
controls:

• Labels

• Push buttons

• Check boxes

• Choice lists

• Lists

• Scroll bars

• Text Editing

These controls are subclasses of Component.

Continued..

• To add a control in a window, create an instance of the
desired control and then add it to a window by calling add(),
which is defined by Component class. One of the form is -

Component add(Component compRef)
compRef is a reference to an instance of the control that you

want to add. A reference to the object is returned.

• To remove a control from a window call remove(). This
method is also defined by Container.

void remove(Component compRef)
compRef is a reference to the control you want to remove.

• To remove all controls, call
removeAll()

Responding to Controls

• Except for labels, which are passive, all other controls
generate events when they are accessed by the user.

• When the user clicks on a push button, an event is
generated that identifies the push button.

• The program simply implements the appropriate
interface and then registers an event listener for each
control that are needed to monitor.

Labels
• A label is an object of type Label, and it contains a

string, which it displays. Label defines the following
constructors:

Label() throws HeadlessException
Label(String str) throws HeadlessException
Label(String str, int how) throws HeadlessException

• The first version creates a blank label.
• The second version creates a label that contains the

string specified by str. This string is left-justified.
• The third version creates a label that contains the

string specified by str using the alignment specified by
how. The value of how must be one of these three
constants: Label.LEFT, Label.RIGHT, or Label.CENTER

Continued..
• To set or change the text in a label call

void setText(String str)
• To return the current label

String getText()
• To set the alignment of the string within the label

call
void setAlignment(int how)

how must be one of the alignment constants.
• To get the current alignment call

int getAlignment()

Example
Create three Labels and add them to Applet-
// Demonstrate Labels
import java.awt.*;
import java.applet.*;
/*
<applet code="LabelDemo" width=300 height=200>
</applet>
*/
public class LabelDemo extends Applet {
public void init() {
Label one = new Label("One");
Label two = new Label("Two");
Label three = new Label("Three");

Continued..
// add labels to applet window
add(one);
add(two);
add(three);
}
}
Note: The labels are organized in the window by the
default layout manager.

Using Buttons
• A push button is a component that contains a label and that

generates an event when it is pressed. Push buttons are
objects of type Button. Button defines these two constructors:

Button() throws HeadlessException

Button(String str) throws HeadlessException

The first version creates an empty button. The second creates a
button that contains str as a label.

• After a button has been created, one can set its label by

void setLabel(String str)

Here, str becomes the new label for the button.

• To retrieve label of a button call

String getLabel()

Handling Buttons
• Each time a button is pressed, an action event is

generated.
• This is sent to any listeners that previously registered

an interest in receiving action event notifications from
that component.

• Each listener implements the ActionListener interface.
That interface defines the actionPerformed() method,
which is called when an event occurs.

• An ActionEvent object is supplied as the argument to
this method. It contains both a reference to the button
that generated the event and a reference to the action
command string associated with the button.

• By default, the action command string is the label of
the button.

Example

• Here is an example that creates three buttons
labeled "Yes", "No", and "Undecided".

• Each time one is pressed, a message is displayed that
reports which button has been pressed.

• In this version, the action command of the button
(is its label) is used to determine which button has
been pressed.

• The label is obtained by calling the
getActionCommand() method on the ActionEvent
object passed to actionPerformed().

Code

// Demonstrate Buttons

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="ButtonDemo" width=250
height=150>

</applet>

*/

Continued..

public class ButtonDemo extends Applet
implements ActionListener {

String msg = "";

Button yes, no, maybe;

public void init() {

yes = new Button("Yes"); // create three
instances of Button class

no = new Button("No");

maybe = new Button("Undecided");

Continued..
add(yes); // returned reference to the added
component is not used

add(no);

add(maybe);

yes.addActionListener(this);

no.addActionListener(this);

maybe.addActionListener(this);

}

Continued..
public void actionPerformed(ActionEvent ae) {
String str = ae.getActionCommand();
if(str.equals("Yes")) {
msg = "You pressed Yes.";
}
else if(str.equals("No")) {
msg = "You pressed No.";
}
else {
msg = "You pressed Undecided.";
}
repaint();
}

Continued..
public void paint(Graphics g) {
g.drawString(msg, 6, 100);
}
}

Alternate Code

• Instead of comparing button action command
strings, one can also determine which button
has been pressed by comparing the object
obtained from the getSource() method to the
button objects that are added to the window.

• To do this, one must keep a list of the objects
when they are added. The following applet
shows this approach:

Code
// Recognize Button objects.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="ButtonList" width=250
height=150>

</applet>

*/

Code

public class ButtonList extends Applet
implements ActionListener {

String msg = "";
Button bList[] = new Button[3];
public void init() {
Button yes = new Button("Yes");
Button no = new Button("No");
Button maybe = new Button("Undecided");

Continued..
// store references to buttons as added
bList[0] = (Button) add(yes); //return type of add is
component
bList[1] = (Button) add(no); //to tell that it is button
type casting
bList[2] = (Button) add(maybe); // is used
// register to receive action events
for(int i = 0; i < 3; i++) {
bList[i].addActionListener(this);
} // end for
} // end init()

Continued..

public void actionPerformed(ActionEvent ae) {
for(int i = 0; i < 3; i++) {
If (ae.getSource() == bList[i]) {
msg = "You pressed " + bList[i].getLabel();
}
}
repaint();
}
public void paint(Graphics g) {
g.drawString(msg, 6, 100);
}
}

Continued..
• In this version, the program stores each button
reference in an array when the buttons are added to
the applet window.
• Inside actionPerformed(), this array is then used to
determine which button has been pressed.
• For simple programs, it is usually easier to recognize
buttons by their labels.
• However, in situations in which you will be changing
the label inside a button during the execution of your
program, or using buttons that have the same label, it
may be easier to determine which button has been
pushed by using its object reference.

Continued..
It is also possible to set the action command
string associated with a button to something
other than its label by calling
setActionCommand().

This method changes the action command
string, but does not affect the string used to
label the button.

Thus, setting the action command enables the
action command and the label of a button to
differ.

Adding a Button to Frame in a Standalone GUI program
import java.awt.*;
import java.awt.event.*;
public class ButtonText {

public static void main(String[] args) {
Frame frame=new Frame("Button Frame");
Button button = new Button("Submit");
frame.add(button);
frame.setLayout(new FlowLayout());
frame.setSize(200,100);
frame.setVisible(true);
frame.addWindowListener(new WindowAdapter(){

public void windowClosing(WindowEvent e){
System.exit(0);

}
});

}
}

